Discrepancy and Integration of Continuous Functions

Petko D. Proinov
Department of Mathematics, University of Plovdiv, Plovdiv 4000, Bulgaria
Communicated by Jaak Peetre

Received May 13, 1985

1. Introduction

A sequence $p_{1}, p_{2}, \ldots, p_{N}$ of nonnegative numbers is said to be a weight sequence if

$$
\sum_{\kappa=1}^{N} p_{\kappa}=1 .
$$

Let $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ be a sequence of N points in the s-dimensional unit cube $E^{s}=[0,1]^{s}$ and $p_{1}, p_{2}, \ldots, p_{N}$ be a weight sequence. We call the numbers $p_{1}, p_{2}, \ldots, p_{N}$ weights of the points $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$, respectively. For a subset A of E^{s}, denote by $\chi(A ; \bar{x})$ and $\mu(A)$ the characteristic function and Lebesgue measure of A, respectively, and put

$$
T_{N}(A)=\sum_{\kappa=1}^{N} p_{\kappa} \chi\left(A ; \bar{a}_{\kappa}\right) .
$$

For a point $\bar{x}=\left(x_{1}, \ldots, x_{s}\right)$ lying in E^{s}, write

$$
G_{\bar{x}}=\left[0, x_{1}\right) \times \cdots \times\left[0, x_{s}\right) .
$$

We recall that the number

$$
\begin{equation*}
D_{N}=\sup _{\bar{x} \in E^{\mathrm{s}}}\left|\mu\left(G_{\bar{x}}\right)-T_{N}\left(G_{\bar{x}}\right)\right| \tag{1}
\end{equation*}
$$

is called the discrepancy of the sequence $\bar{a}_{1}, \vec{a}_{2}, \ldots, \bar{a}_{N}$ with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$.

We consider in this paper quadrature formulae of the type

$$
\begin{equation*}
\int_{E^{s}} f(\bar{x}) d \bar{x}=\sum_{\kappa=1}^{N} p_{\kappa} f\left(\bar{a}_{\kappa}\right)+R_{N}(f) \tag{2}
\end{equation*}
$$

for integration of continuous functions on E^{s}. Denote by $C(A)$ the set of all continuous functions, defined on a subset A of E^{s}. As a characteristic of a function $f \in C\left(E^{s}\right)$ we use its modulus of continuity

$$
\omega(f ; \delta)=\sup _{\substack{\|\bar{x}-\bar{y}\| \leqslant \delta \\ \bar{x}, \bar{y} \in E^{y}}}|f(\bar{x})-f(\bar{y})|, \quad \delta \geqslant 0
$$

where $\|\bar{x}\|$ denotes the maximum norm of a point $\bar{x}=\left(x_{1}, \ldots, x_{s}\right)$ lying in \mathbb{R}^{s}, i.e.,

$$
\|\bar{x}\|=\max _{1 \leqslant j \leqslant s}\left|u_{j}\right| .
$$

We recall that the inequality

$$
\begin{equation*}
\omega\left(f ; \delta_{1}+\delta_{2}\right) \leqslant \omega\left(f ; \delta_{1}\right)+\omega\left(f ; \delta_{2}\right) \tag{3}
\end{equation*}
$$

holds for all $\delta_{1}, \delta_{2} \geqslant 0$.
In the one-dimensional case, it is known that if $f \in C(E)$ then

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \omega\left(f ; D_{N}\right) \tag{4}
\end{equation*}
$$

This estimate was proved by Niederreiter [1] for the weights

$$
\begin{equation*}
p_{1}=p_{2}=\cdots=p_{N}=1 / N \tag{5}
\end{equation*}
$$

The estimate (4) for arbitrary weights was obtained by the author [2] and reobtained by Niederreiter and Tichy [3].

Now let $s \geqslant 2$ and $f \in C\left(E^{s}\right)$. In the case (5), Hlawka [4] proved the estimate

$$
\left|R_{N}(f)\right| \leqslant\left(2^{2 s-1}+1\right) \omega\left(f ;\left[D_{N}^{-1}\right]^{-1 / s}\right)
$$

Here and throughout, $[\alpha]$ denotes the integral part of a real number α. Shi Shu-zhong [5,6] (also for the case of equal weights), answering to a question of Niederreiter, proved the estimate

$$
\left|R_{N}(f)\right| \leqslant 5 \omega\left(f ; D_{N}^{1 / s}\right)
$$

For arbitrary weights Totkov [7] established the estimate

$$
\left|R_{N}(f)\right| \leqslant\left(2^{s}+1\right) \omega\left(f ; 2\left[D_{N}^{-1}\right]^{-1 / s}\right)
$$

The purpose of the present paper is to prove the following two results.

Theorem 1. Suppose $s \geqslant 2$. Let D_{N} be the discrepancy of a sequence $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ in E^{s} with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Then for every $f \in C\left(E^{y}\right)$, we have

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant 4 \omega\left(f ; D_{N}^{1 / s}\right) \tag{6}
\end{equation*}
$$

Theorem 2. Suppose $s \geqslant 1$. Let D_{N} be the discrepancy of a sequence $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ in E^{s} with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Suppose that c is a positive number and the estimate

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant c \omega\left(f ; D_{N}^{1 / s}\right) \tag{7}
\end{equation*}
$$

holds for every $f \in C\left(E^{s}\right)$. Then

$$
\begin{equation*}
c \geqslant 1 \tag{8}
\end{equation*}
$$

Now, denote by c_{0} the minimal possible constant c for which the estimate (7) holds for every $f \in C\left(E^{s}\right)$. It follows from the above theorems that

$$
1 \leqslant c_{0} \leqslant 4
$$

The exact value of c_{0} is unknown. We think that

$$
c_{0}=1
$$

but we cannot prove that. So we set the following
Problem. Check the validity of the following assertion: Suppose $s \geqslant 2$ and D_{N} is the discrepancy of a sequence $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ in E^{s} with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Then for every $f \in C\left(E^{s}\right)$, we have

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \omega\left(f ; D_{N}^{1 / s}\right) \tag{9}
\end{equation*}
$$

Note that in the one-dimensional case ($s=1$), the estimate (9) coincides with (4) and so it is true.

2. Auxiliary Results

To prove Theorem 1 we need some lemmas. In what follows, we use the following notations. For $f \in C\left(E^{s}\right)$, we write

$$
\|f\|_{C}=\sup _{\bar{x} \in E^{s}}|f(\bar{x})| .
$$

Let $Q=[0,1) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ be a subinterval of E^{s}. Define the quantity $d(Q)$ by

$$
d(Q)=\max _{2 \leqslant j \leqslant s}\left|\beta_{j}-\alpha_{j}\right| .
$$

Lemma 1. Let $a_{1}, a_{2}, \ldots, a_{N}$ be a nondecreasing sequence in $E=[0,1]$. Then its discrepancy D_{N} with respect to arbitrary weights $p_{1}, p_{2}, \ldots, p_{N}$ is given by

$$
D_{N}=\max _{1 \leqslant \kappa \leqslant N} \max \left\{\left|a_{\kappa}-b_{\kappa}\right|,\left|a_{\kappa}-b_{\kappa-1}\right|\right\},
$$

where the numbers $b_{0}, b_{1}, \ldots, b_{N}$ are defined by

$$
\begin{equation*}
b_{0}=0, \quad b_{\kappa}=\sum_{i=1}^{\kappa} p_{i} \quad(\kappa=1,2, \ldots, N) \tag{10}
\end{equation*}
$$

In the special case (5), this lemma was proved by Niederreiter [8]. In the general case, it was obtained by the author [2] and reobtained by Niederreiter and Tichy [3].

The next assertion is a consequence of Lemma 1.
Lemma 2. Let $a_{1}, a_{2}, \ldots, a_{N}$ be a nondecreasing sequence in E and D_{N} be its discrepancy with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Define the numbers $b_{0}, b_{1}, \ldots, b_{N}$ by (10). Then for every $x \in\left[b_{\kappa-1}, b_{\kappa}\right], 1 \leqslant \kappa \leqslant N$, we have

$$
\left|x-a_{\kappa}\right| \leqslant D_{N} .
$$

Lemma 3. Let $Q_{\gamma}=[0, \gamma) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ be a subinterval of E^{s}. Suppose that $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ is a sequence in E^{s} and D_{N} is its discrepancy with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Then

$$
\left|\mu\left(Q_{\gamma}\right)-T_{N}\left(Q_{\gamma}\right)\right| \leqslant 2^{s-1} D_{N} .
$$

Proof. The statement of the lemma follows from the definition of D_{N} and the inequality

$$
\left|\mu\left(Q_{\dot{\gamma}}\right)-T_{N}\left(Q_{\gamma}\right)\right| \leqslant \sum_{\vec{x}}\left|\mu\left(G_{\bar{x}}\right)-T_{N}\left(G_{\vec{x}}\right)\right|,
$$

where the sum is over all points $\bar{x}=\left(x_{1}, \ldots, x_{s}\right)$ with $x_{1}=\gamma$ and $x_{j}=\alpha_{j}$ or β_{j} for $j=2, \ldots, s$.

Lemma 4. Let $Q=[0,1) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ and $Q_{\gamma}=[0, \gamma) \times$ $\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ be subintervals of E^{s}. Suppose that $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ is a
sequence in E^{s} and D_{N} is its discrepancy with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Then

$$
\left|\gamma T_{N}(Q)-T_{N}\left(Q_{\gamma}\right)\right| \leqslant 2^{s} D_{N}
$$

Proof. Note that $\mu\left(Q_{\gamma}\right)=\gamma \mu(Q)$ and $Q=Q_{\gamma}$ if $\gamma=1$. Hence, we get from Lemma 3,

$$
\begin{aligned}
& \left|\gamma T_{N}(Q)-T_{N}\left(Q_{\gamma}\right)\right| \\
& \quad \leqslant\left|\gamma T_{N}(Q)-\mu\left(Q_{\gamma}\right)\right|+\left|\mu\left(Q_{\gamma}\right)-T_{N}\left(Q_{\gamma}\right)\right| \\
& \quad=\gamma\left|\mu(Q)-T_{N}(Q)\right|+\left|\mu\left(Q_{\gamma}\right)-T_{N}\left(Q_{\gamma}\right)\right| \\
& \quad \leqslant \gamma 2^{s-1} D_{N}+2^{s-1} D_{N} \leqslant 2^{s} D_{N}
\end{aligned}
$$

Lemma 5. Let $Q=[0,1) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ be a subinterval of E^{s}. Suppose that $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ is a sequence in E^{s} and $q_{1}, q_{2}, \ldots, q_{n}$ are arbitrary weights. Denote by D_{n}^{\prime} the discrepancy of the one-dimensional sequence formed by the first coordinates of $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ with respect to the weights $q_{1}, q_{2}, \ldots, q_{n}$. Then for every $f \in C(Q)$, we have

$$
\begin{equation*}
\left|\int_{Q} f(\bar{x}) d \bar{x}-\mu(Q) \sum_{\kappa=1}^{n} q_{\kappa} f\left(\bar{a}_{\kappa}\right)\right| \leqslant \mu(Q) \omega\left(f ; d_{n}(Q)\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n}(Q)=\max \left\{D_{n}^{\prime}, d(Q)\right\} . \tag{12}
\end{equation*}
$$

Proof. Without loss of generality we may assume that the points $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ are ordered in such a way that the sequence of their first coordinates in nondecreasing. For each $\kappa=1,2, \ldots, n$, put

$$
Q_{\kappa}=\left[b_{\kappa-1}, b_{\kappa}\right) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)
$$

where

$$
b_{0}=0, \quad b_{\kappa}=\sum_{i=1}^{\kappa} q_{i} \quad(\kappa=1,2, \ldots, n) .
$$

It is obvious that the subintervals $Q_{1}, Q_{2}, \ldots, Q_{n}$ define a subdivision of Q and

$$
\int_{Q_{\kappa}} d \bar{x}=\mu\left(Q_{\kappa}\right)=\mu(Q) q_{\kappa} \quad(\kappa=1,2, \ldots, n)
$$

Therefore,

$$
\begin{align*}
& \left|\int_{Q} f(\bar{x}) d \bar{x}-\mu(Q) \sum_{\kappa=1}^{n} q_{\kappa} f\left(\bar{a}_{\kappa}\right)\right| \\
& \quad=\left|\sum_{\kappa=1}^{n} \int_{Q_{\kappa}}\left(f(\bar{x})-f\left(\bar{a}_{\kappa}\right)\right) d \bar{x}\right| \\
& \quad \leqslant \sum_{\kappa=1}^{n} \int_{Q_{\kappa}}\left|f(\bar{x})-f\left(\bar{a}_{\kappa}\right)\right| d \bar{x} \\
& \quad \leqslant \sum_{\kappa=1}^{n} \int_{Q_{\kappa}} \omega\left(f ;\left\|\bar{x}-\bar{a}_{\kappa}\right\|\right) d x \tag{13}
\end{align*}
$$

It follows from Lemma 2 that for every $x \in Q_{\kappa}(1 \leqslant \kappa \leqslant n)$, we have

$$
\begin{equation*}
\left\|\bar{x}-\bar{a}_{\kappa}\right\| \leqslant \max \left(D_{n}^{\prime}, d(Q)\right)=d_{n}(Q) \tag{14}
\end{equation*}
$$

Combining (13) and (14) we get (11).
Lemma 6. Let D_{N} be the discrepancy of a sequence $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{N}$ in E^{s} with respect to the weights $p_{1}, p_{2}, \ldots, p_{N}$. Suppose that \mathscr{A} is a subdivision of E^{s} into subintervals of the type $[0,1) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$ and $T_{N}(Q)>0$ for every $Q \in \mathscr{A}$. Then

$$
\begin{aligned}
\left|R_{N}(f)\right| \leqslant & 2^{s-1}|\mathscr{A}| D_{N}\|f\|_{C} \\
& +\sum_{Q \in \mathscr{A}} \mu(Q) \omega\left(f ; \delta_{N}(Q)\right)
\end{aligned}
$$

where $|\mathscr{A}|$ denotes the number of elements of \mathscr{A} and

$$
\begin{equation*}
\delta_{N}(Q)=\max \left\{\frac{2^{s} D_{N}}{T_{N}(Q)}, d(Q)\right\} \tag{15}
\end{equation*}
$$

Proof. It is easy to see that

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \sum_{Q \in \mathscr{\infty}}\left|R_{N}(Q ; f)\right| \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{N}(Q ; f)=\int_{Q} f(\bar{x}) d \bar{x}-\sum_{\kappa=1}^{N} p_{\kappa} f\left(\bar{a}_{\kappa}\right) \chi\left(Q ; \bar{a}_{\kappa}\right) \tag{17}
\end{equation*}
$$

Let $Q=[0,1) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right]$ be an arbitrary element of \mathscr{A}. We shall prove at first that

$$
\begin{equation*}
\left|R_{N}(Q ; f)\right| \leqslant \mu(Q) \omega\left(f ; \delta_{N}(Q)\right)+2^{s-1} D_{N}\|f\|_{C} \tag{18}
\end{equation*}
$$

Denote by n the number of points $\bar{a}_{\kappa}(\kappa=1,2, \ldots, N)$ lying in Q. Without loss of generality we may assume that these points are $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$. Then

$$
T_{N}(Q)=\sum_{\kappa=1}^{n} p_{\kappa}
$$

and the sequence

$$
q_{\kappa}=p_{\kappa} / T_{N}(Q), \quad \kappa=1,2, \ldots, n
$$

is a weight sequence. Denote by D_{n}^{\prime} the discrepancy of the one-dimensional sequence formed by the first coordinates of $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ with respect to the weights $q_{1}, q_{2}, \ldots, q_{n}$. Obviously,

$$
\begin{aligned}
D_{n}^{\prime} & =\sup _{0 \leqslant \gamma \leqslant 1}\left|\gamma-\sum_{\kappa=1}^{n} q_{\kappa} \chi\left(Q_{\gamma} ; \bar{a}_{\kappa}\right)\right| \\
& =T_{N}(Q)^{-1} \sup _{0 \leqslant \gamma \leqslant 1}\left|\gamma T_{N}(Q)-T_{N}\left(Q_{\gamma}\right)\right|,
\end{aligned}
$$

where $Q_{\gamma}=[0, \gamma) \times\left[\alpha_{2}, \beta_{2}\right) \times \cdots \times\left[\alpha_{s}, \beta_{s}\right)$. Now, it follows from Lemma 4 that

$$
\begin{equation*}
D_{n}^{\prime} \leqslant \frac{2^{s} D_{N}}{T_{N}(Q)} \tag{19}
\end{equation*}
$$

Using Lemmas 3 and 5 we get from (17),

$$
\begin{align*}
\left|R_{N}(Q ; f)\right| \leqslant & \left|\int_{Q} f(\bar{x}) d \bar{x}-\mu(Q) \sum_{\kappa=1}^{n} q_{\kappa} f\left(\bar{a}_{\kappa}\right)\right| \\
& +\left|\mu(Q) \sum_{\kappa=1}^{n} q_{\kappa} f\left(\bar{a}_{\kappa}\right)-\sum_{\kappa=1}^{n} p_{\kappa} f\left(\bar{a}_{\kappa}\right)\right| \\
\leqslant & \mu(Q) \omega\left(f ; d_{n}(Q)\right) \\
& +T_{N}(Q)^{-1}\left|\mu(Q)-T_{N}(Q)\right|\left|\sum_{\kappa=1}^{n} p_{\kappa} f\left(\bar{a}_{\kappa}\right)\right| \\
\leqslant & \mu(Q) \omega\left(f ; d_{n}(Q)\right)+2^{v-1} D_{N}\|f\|_{C}, \tag{20}
\end{align*}
$$

where $d_{n}(Q)$ is defined by (12). From (19) and (20), we obtain (18). Now the conclusion of the lemma follows from (16) and (18).

The next assertion was established in [6]. One can easily check its validity.

Lemma 7. Let $f \in C\left(E^{s}\right)$ and the function \tilde{f} is defined on E^{s} by

$$
\widehat{f}(\bar{x})=f(\bar{x})-f(\bar{a}),
$$

where $a=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$. Then
(i) $\quad R_{N}(f)=R_{N}(f)$,
(ii) $\omega(f ; \delta)=\omega(f ; \delta)$ for $\delta \geqslant 0$,
(iii) $\|\widetilde{f}\|_{C} \leqslant \omega\left(\tilde{f} ; \frac{1}{2}\right)$.

3. Proof of Theorem 1

Suppose at first that $D_{N}^{1 / 5} \geqslant \frac{1}{4}$. It follows from Lemma 5 that

$$
\left|R_{N}(f)\right| \leqslant \omega(f ; 1)
$$

Since $1 \leqslant 4 D_{N}^{1 / s}$, we get from this

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \omega\left(f ; 4 D_{N}^{1 / s}\right) \tag{21}
\end{equation*}
$$

Now let $D_{N}^{1 / s} \leqslant \frac{1}{4}$. Put

$$
m=\left[\frac{1}{2 D_{N}^{1 / s}}\right]
$$

It is easy to show that for every real number $\alpha(\alpha \geqslant 2)$,

$$
\frac{2}{3} \alpha \leqslant[\alpha] \leqslant \alpha .
$$

Applying this inequality with $\alpha=1 / 2 D_{N}^{1 / s}$ we obtain

$$
\begin{equation*}
2 D_{N}^{1 / s} \leqslant \frac{1}{m} \leqslant 3 D_{N}^{1 / s} \tag{22}
\end{equation*}
$$

Denote by \mathscr{A} the subdivision of E^{s} into subintervals of the type

$$
[0,1] \times\left[\frac{\kappa_{2}-1}{m}, \frac{\kappa_{2}}{m}\right) \times \cdots \times\left[\frac{\kappa_{s}-1}{m}, \frac{\kappa_{s}}{m}\right)
$$

where κ_{j} are integers with $1 \leqslant \kappa_{j} \leqslant m(j=2, \ldots, s)$. Let Q be an arbitrary element of \mathscr{A}. According to Lemma 3,

$$
\left|\mu(Q)-T_{N}(Q)\right| \leqslant 2^{s-1} D_{N}
$$

Hence, we get from (22)

$$
\begin{align*}
T_{N}(Q) & \geqslant \mu(Q)-2^{s-1} D_{N} \\
& =\left(\frac{1}{m}\right)^{s-1}-2^{s-1} D_{N} \geqslant 2^{s-1} D_{N}^{1-1 / s}-2^{s-1} D_{N} \\
& =2^{s-1} D_{N}\left(D_{N}^{-1 / s}-1\right) \tag{23}
\end{align*}
$$

Since $D_{N}^{1 / s} \leqslant \frac{1}{4}$, it follows that

$$
\begin{equation*}
D_{N}^{-1 / s}-1 \geqslant \frac{3}{4} D_{N}^{-1 / s} \tag{24}
\end{equation*}
$$

Hence, we get from (23) and (24),

$$
\begin{equation*}
T_{N}(Q) \geqslant \frac{3}{8} 2^{s} D_{N}^{1-1 / s} \tag{25}
\end{equation*}
$$

Define $\delta_{N}(Q)$ by (15). Then from (25) and (22), we obtain

$$
\begin{equation*}
\delta_{N}(Q)=\max \left\{\frac{2^{s} D_{N}}{T_{N}(Q)}, \frac{1}{m}\right\} \leqslant 3 D_{N}^{1 / s} \tag{26}
\end{equation*}
$$

Now, taking into account that $|\mathscr{A}|=m^{s-1}$, we deduce from (22), (26), and Lemma 6 the following estimate

$$
\begin{align*}
\left|R_{N}(f)\right| \leqslant & (2 m)^{s-1} D_{N}\|f\|_{C} \\
& +\sum_{Q \in \mathscr{\infty}} \mu(Q) \omega\left(f ; 3 D_{N}^{1 / s}\right) \\
= & (2 m)^{s-1} D_{N}\|f\|_{C}+\omega\left(f ; 3 D_{N}^{1 / s}\right) \\
\leqslant & (2 m)^{-1}\|f\|_{C}+\omega\left(f ; 3 D_{N}^{1 / s}\right) . \tag{27}
\end{align*}
$$

It follows from Lemma 7 that, without loss of generality, we may assume

$$
\|f\|_{C} \leqslant \omega\left(f ; \frac{1}{2}\right)
$$

Then using (3) and (22) we deduce

$$
\begin{equation*}
\|f\|_{C} \leqslant 2 m \omega\left(f ; \frac{1}{4 m}\right) \leqslant 2 m \omega\left(f ; \frac{3}{4} D_{N}^{1 / s}\right) \tag{28}
\end{equation*}
$$

Combining (27) and (28) we get

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \omega\left(f ; \frac{3}{4} D_{N}^{1 / s}\right)+\omega\left(f ; 3 D_{N}^{1 / s}\right) \tag{29}
\end{equation*}
$$

From (21), (29), and (3), it follows that in both cases

$$
\begin{equation*}
\left|R_{N}(f)\right| \leqslant \omega\left(f ; D_{N}^{1 / s}\right)+\omega\left(f ; 3 D_{N}^{1 / s}\right) \tag{30}
\end{equation*}
$$

Now, the estimate (6) follows from (30) and (3). This completes the proof of Theorem 1.

4. Proof of Theorem 2

Suppose that the estimate (7) hold for every $f \in C\left(E^{s}\right)$. Choose a positive real number ε with

$$
0<\varepsilon<\min \left\{\delta_{N}, D_{N}^{1 / s}\right\},
$$

where

$$
\delta_{N}=\min _{\substack{1 \leqslant i>j \leq N \\ \bar{u}_{i} \neq a_{j}}}\left\|\bar{a}_{i}-\bar{a}_{j}\right\| .
$$

We denote by $U_{\epsilon}(\bar{a})$ the $\varepsilon / 2$-neighborhood of a point $\bar{a} \in \mathbb{R}^{s}$, i.e.,

$$
U_{\epsilon}(\bar{a})=\left\{\bar{x} \in \mathbb{R}^{s}:\|\bar{x}-\bar{a}\| \leqslant \varepsilon / 2\right\} .
$$

Define the function f_{ε} on \mathbb{R}^{s} by

$$
f_{\varepsilon}(\bar{x})= \begin{cases}\frac{2}{\varepsilon}\left\|\bar{x}-\bar{a}_{\kappa}\right\| ; & \bar{x} \in U_{\varepsilon}\left(\bar{a}_{\kappa}\right), \kappa=1,2, \ldots, N . \\ 1 & \text { otherwise. }\end{cases}
$$

Obviously,

$$
f_{\varepsilon} \in C\left(E^{s}\right)
$$

and

$$
f\left(\bar{a}_{k}\right)=0 \quad \text { for } \quad \kappa=1,2, \ldots, N .
$$

Consequently,

$$
\begin{align*}
R_{N}\left(f_{\varepsilon}\right) & =\int_{E^{s}} f_{\varepsilon}(\bar{x}) d \bar{x} \\
& =1-\int_{E^{s}}\left(1-f_{\varepsilon}(\bar{x})\right) d \bar{x} \\
& \geqslant 1-\sum_{\kappa=1}^{N} \int_{U_{\varepsilon}\left(\bar{a}_{\kappa}\right)}\left(1-f_{\varepsilon}(\bar{x})\right) d \bar{x} \\
& =1-N \varepsilon^{s}+\frac{2}{\varepsilon} \sum_{\kappa=1}^{N} \int_{\left\|\bar{x}-\bar{a}_{\kappa}\right\| \leqslant \varepsilon / 2}\left\|\bar{x}-\bar{a}_{\kappa}\right\| d \bar{x} \\
& =1-N \varepsilon^{s}+\frac{2 N}{\varepsilon} \int_{\|\bar{x}\| \leqslant \varepsilon / 2}\|\bar{x}\| d \bar{x} \\
& =1-\frac{N \varepsilon^{s}}{s+1} . \tag{31}
\end{align*}
$$

It is easy to see that $\omega\left(f_{\varepsilon} ; \delta\right)=1$ for $\delta \geqslant \varepsilon$. Hence, we have

$$
\begin{equation*}
\omega\left(f_{\varepsilon} ; D_{N}^{1 / s}\right)=1 \tag{32}
\end{equation*}
$$

From (7), we have

$$
\begin{equation*}
R_{N}\left(f_{\varepsilon}\right) \leqslant c \omega\left(f_{\varepsilon} ; D_{N}^{1 / s}\right) \tag{33}
\end{equation*}
$$

Combining (31), (32), and (33) we get

$$
1-\frac{N \varepsilon^{s}}{s+1} \leqslant c
$$

Passing to the limit as $\varepsilon \rightarrow 0+$ in this inequality we obtain (8). This completes the proof of Theorem 2.

References

1. H. Niederreiter, Methods for estimating discrepancy, "Application of Number Theory to Numerical Analysis" (Proc. Sympos., Montreal, 1971), pp. 203-236, Academic Press, New York, 1972.
2. P. D. Proinov, Note on the convergence of the general quadrature process with positive weights, "Constructive Function Theory '77" (Proc. Internat. Conf., Blagoevgrad, 1977), pp. 121-125, Sofia, 1980. [Russian]
3. H. Niederreiter and R. F. Tichy, Beiträge zur Diskrepanz bezüglich gewichteter Mittel, Manuscripta Math. 42 (1983), 85-99.
4. E. Hlawka, "Discrepancy and Riemann Integration, Studies in Pure Mathematics" (L. Mirsky, Ed.), pp. 121-129, Academic Press, New York, 1971.
5. Shi Shu-zhong, Optimal uniform distributions generated by M-sequences, Acta Math. Sinica 22 (1979), 123-128. [Chinese]
6. Shi Shu-zhong, Estimate of error for quadrature or several dimensional continuous function, Math. Numer. Sinica 3 (1981), 360-364. [Chinese]
7. G. A. Torkov, On the convergence of multidimensional quadrature formulae, C. R. Acad. Bulgare Sci. 37 (1984), 1171-1174. [Russian]
8. H. Niederreiter, Discrepancy and convex programming, Ann. Mat. Pura Appl. (Ser. 4) 93 (1972), 89-97.
