JOURNAL OF APPROXIMATION THEORY 52, 121-131 (1988)

Discrepancy and
Integration of Continuous Functions

PETKO D. PrOINOV

Department of Mathematics, University of Plovdiv, Plovdiv 4000, Bulgaria
Communicated by Jaak Peetre

Received May 13, 1985

1. INTRODUCTION

A sequence p,, p,, .., pn Of nonnegative numbers is said to be a weight
sequence if

N

Y pe=1

k=1
Let a,, @, .., ay be a sequence of N points in the s-dimensional unit cube
E*=[0,1]" and p,, p,, .., py be a weight sequence. We call the numbers
P1s P2» - Py Weights of the points a,, 4,, .., @, respectively. For a subset
A of Ef, denote by x(A4;x) and u(A4) the characteristic function and
Lebesgue measure of A, respectively, and put

TuA)= Y pox(4;a,)

k=1
For a point ¥ =(x,, .., x,) lying in E*, write
G.=10,x,)x --- x[0, x,).
We recall that the number

Dy =sup {u(G;)— Th(G:)l (1)

xek*

is called the discrepancy of the sequence a,, 4,, ..., ay With respect to the

weights p,, P>, - Pn-
We consider in this paper quadrature formulae of the type

N

| /@ dx= 3 p.f@)+ Ryl ) (2)
121
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for integration of continuous functions on E°. Denote by C(A4) the set of all
continuous functions, defined on a subset 4 of E*. As a characteristic of a
function f e C(E*) we use its modulus of continuity

o(f; 8)= supélf(i)—f(y‘)i, 530,
i€ - pll <
X re kS

where | X|| denotes the maximum norm of a point ¥ = (x,, .., x,) lying in
R ie.,

1% = max fu,.

1<j<s

We recall that the inequality
o f0,+d;)<w(f;6,)+w(f; ;) (3)

holds for all é,, §,=0.
In the one-dimensional case, it is known that if f'e C(E) then

[RM( I S f; Dy). 4)

This estimate was proved by Niederreiter [ 1] for the weights

pr=p,=---=py=1/N. (5)

The estimate (4) for arbitrary weights was obtained by the author [2] and
reobtained by Niederreiter and Tichy [3].

Now let s=2 and fe C(E®). In the case (5), Hlawka [4] proved the
estimate

IR <Q@* '+ Do £ ID' ).

Here and throughout, [a] denotes the integral part of a real number a.
Shi Shu-zhong [5, 6] (also for the case of equal weights), answering to a
question of Niederreiter, proved the estimate

IRV < S5(f; D).

For arbitrary weights Totkov [7] established the estimate
RIS (27 + 1) o(f;2[D3']71).

The purpose of the present paper is to prove the following two results.
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THEOREM 1. Suppose sz 2. Let Dy be the discrepancy of a sequence
dy, dy, - Ay In E° with respect to the weights p,, p,, .., pn. Then for every
feC(E"), we have

RN N <da(f; DY) (6)

THEOREM 2. Suppose sz 1. Let Dy be the discrepancy of a sequence
d,, @y, .., dy in E° with respect to the weights p,, p,, .., py. Suppose that ¢
is a positive number and the estimate

IRM( ) < cal f; DY) (7)

holds for every fe C(E*). Then

el (8)

Now, denote by ¢, the minimal possible constant ¢ for which the
estimate (7) holds for every fe C(E®). It follows from the above theorems
that

1<co<ld
The exact value of ¢ is unknown. We think that
co=1
but we cannot prove that. So we set the following

PrOBLEM. Check the validity of the following assertion: Suppose s =2
and D, is the discrepancy of a sequence a,, a,, .., @, in £ with respect to
the weights p,, p,, .., py. Then for every fe C(E®), we have

IR <ol f; D). 9)

Note that in the one-dimensional case (s= 1), the estimate (9) coincides
with (4) and so it is true.

2. AUXILIARY RESULTS

To prove Theorem 1 we need some lemmas. In what follows, we use the
following notations. For fe C(E*), we write

I/l = sup [f(X)I.

xe kS
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Let 0=[0,1)x[a,, f5)%x --- x [a,, B,) be a subinterval of E°. Define the
quantity d(Q) by

dQ)= zTai( 1B — .

<j<s

LemMma 1. Let ay, a,, .., ay be a nondecreasing sequence in E=[0,1].
Then its discrepancy D, with respect to arbitrary weights p,, ps, -, Pn IS
given by

DN= max max{laﬁc‘b;\'l’ 'aK‘bx—l,}a

Ik N

where the numbers by, b, ..., by are defined by

bo=0, by=Y p, (k=12 .,N) (10)

In the special case (5), this lemma was proved by Niederreiter [8]. In
the general case, it was obtained by the author [2] and reobtained by
Niederreiter and Tichy [3].

The next assertion is a consequence of Lemma 1.

LEMMA 2. Let a,, a,, .., ay be a nondecreasing sequence in E and D be
its discrepancy with respect to the weights p,, p,, .., pn. Define the numbers
bo, by, ..., by by (10). Then for every xe[b, _,,b.], | Kk <N, we have

Ix—axlgDN'

LemMa 3. Let Q,=1[0,y)x [a,, B,)x --- x [a,, B,) be a subinterval of
E°. Suppose that a,, a,, ..., ay is a sequence in E* and D is its discrepancy
with respect to the weights p,, p,, .., pn. Then

1(Q,) = Ti(@,)I<2°7'Dy.

Proof. The statement of the lemma follows from the definition of D,
and the inequality

l(Q,) — TW(Q,)l SZ (G ) = Th(G)ls

where the sum is over all points ¥ = (x,, .., x,) with x, =y and x;=«; or §,
for j=2,..,s.

LemMa 4. Let Q=[0,1)x [ay, f2)x --- x[a,, B,) and Q. =10, 7)x
[os, Ba)x - x [a, B,) be subintervals of E*. Suppose that a,, d,, ..., dy is a
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sequence in E* and D, is its discrepancy with respect to the weights
Pis P2s s PN- Then

1PTa(Q)—TNQ,) <2°Dy.

Proof. Note that u(Q,)=yu(Q) and Q =Q, if y = 1. Hence, we get from
Lemma 3,

PT\Q)—ThQ,)l
SHTMQ)— w @) +1u(Q,) — TW(Q,)]
=7 Q)= Tp(Q) + 1(Q,) — TW(Q,)l
<y2° " 'Dy+2° 7 'Dy<2°Dy,.

LEmMMmA 5. Let Q=1[0, 1)x [a,, B,)x -+ x[a,, f,) be a subinterval of
E’. Suppose that a,,a,, .., a, is a sequence in E* and q,,q,, .., q, are
arbitrary weights. Denote by D, the discrepancy of the one-dimensional
sequence formed by the first coordinates of a,, a,, ..., a, with respect to the
weights q,, 4>, .., .. Then for every fe C(Q), we have

UQf(i)di—u(Q) Y g f@)|<u@o(fd Q) (1)

K=1
where

d,(Q)=max{D,, d(Q)}. (12)

Proof. Without loss of generality we may assume that the points
a,, d,, .., a, arc ordered in such a way that the sequence of their first coor-
dinates in nondecreasing. For each k=1, 2, .., »n, put

ch: [bk—labx)x [azs ﬁz)x e X [aw ﬂx)s

where

It is obvious that the subintervals Q,, Q,, .., Q,, define a subdivision of Q
and

JQ'df=u(Qx)=#(Q)qK (k=1,2,...n)
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Therefore,

| A0dz-u) ¥ g.sia

H

L[ vw-rayds

<Y [ o a

n

<3 | otsiE-ad)ax (13)

k=1
It follows from Lemma 2 that for every xe 0, (1 <k <n), we have
X —a,.ll <max(D,, d(Q))=d,(Q). (14)
Combining (13) and (14) we get (11).
LEMMA 6. Let Dy be the discrepancy of a sequence a,, a,, .., ay in E*
with respect to the weights p,, p,, ..., pn. Suppose that s/ is a subdivision of

E* into subintervals of the type [0,1)x[ay, f2)x -+ x[ay, B,) and
T\(Q)>0 for every Q€ of. Then

|IRMIN <2l Dy llfll e
+ Y Q) o(fidnQ))

Qe

where |&7| denotes the number of elements of .«/ and

3,(0)=max | Z2%, d(0). (15)
Proof. 1t is easy to see that
BRSNS T IRAQ . (16)
where |
RuQ:/)=] 10 df—é po f@) £(Q &) (17)

Let Q=[0, 1)x [a,, f,)x --- x [a,, ,) be an arbitrary element of /. We
shall prove at first that

IRMQ:; I <p(Q) o(f;6:(2))+ 27Dy I/l - (18)
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Denote by n the number of points a, (k=1, 2, ..., N) lying in Q. Without
loss of generality we may assume that these points are a,, a,, ..., @,. Then

and the sequence
qh:pk/TN(Q)’ K=1,2, s

is a weight sequence. Denote by D,, the discrepancy of the one-dimensional
sequence formed by the first coordinates of a,, a,, ..., a, with respect to the
weights ¢, 45, ..., ¢,. Obviously,

n

D,= sup |y— Y ¢.x(0,:4d,)

[LE R k=1

=Ty(Q) " sup [yTW@)—TnQ,)ls

O0sy<l

where Q. = [0, y) x [a,, f2) x --- x [«,, B,). Now, it follows from Lemma 4
that

2Dy
TMQ)

D, < (19)

Using Lemmas 3 and 5 we get from (17),

N(Q;f)|<UQf Yds—u(0) Y, 4./

k=1

n

+|u<Q> S g @) -3 pefla

k=1 k=1

<u(Q) (£ d,(0))
S p. fl@)

k=1

+TMQ) ' 1(Q) -

<@l f,d(2)+2" 'Dylflc, (20)

where d,(Q) is defined by (12). From (19) and (20), we obtain (18). Now
the conclusion of the lemma follows from (16) and (18).

The next assertion was established in [6]. One can easily check its
validity.
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LEMMA 7. Let f€ C(E*) and the function f is defined on E* by
J(x)=f(x)—f(a),

where a= (3, 1,. ,%). Then
() Ra(])=
],5)=w(f,5 ) for 20,
(iii) I7le<o(f;4).
3. PrOOF OF THEOREM 1
Suppose at first that Di*> 1. It follows from Lemma 5 that

RSN <(fi1)

Since 1 <4DY*, we get from this

Ry( /) <ol f: 4DYY). (21)

1
o)

It is easy to show that for every real number o (x> 2),

Now let DY <} Put

Za<[a]<a
Applying this inequality with «=1/2D%* we obtain

1
2D <—<3DY- (22)

3

Denote by <7 the subdivision of E¥ into subintervals of the type

—1 — 1
[0, 1] x| 202 B | B )
m ' m m 'm
where k; are integers with 1 <x,<m (j=2,..,5). Let O be an arbitrary
element of /. According to Lemma 3,

Q) —-TpQ) <2 '‘Dy.

Hence, we get from (22)
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TW@)ZuQ)—2°"" lDN

1 s—1

=2"'Dy(D5"*—1). (23)
Since D} <4, it follows that
Dy's—12z3Dy'" (24)
Hence, we get from (23) and (24),
T\(Q) 232Dy '~ (25)

Define 4 ,(Q) by (15). Then from (25) and (22), we obtain

2D, 1
5N(Q)=max{TN(Q),E}<3D,‘\P. (26)

Now, taking into account that |.«/| =m* !, we deduce from (22), (26), and
Lemma 6 the following estimate

IRV 2m)y =" Dy lfllc
+ L wQ)wl(f:3Dy)

Qe
=(2my "' Dy Ifllc+ @l f;3DY)
<@2m)~ " flle + o(f; 3D (27)
1t follows from Lemma 7 that, without loss of generality, we may assume
Iflle < o(f; 3).
Then using (3) and (22) we deduce

1
e < 2mo <f; E) <2mo(f3DL), (28)

Combining (27) and (28) we get

IRMN<o(f;3DF) + o f;3DR). (29)
From (21), (29), and (3), it follows that in both cases

IRV <l f; DY) + o f;3DF). (30)

Now, the estimate (6) follows from (30) and (3). This completes the proof
of Theorem 1.
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4. PROOF OF THEOREM 2

Suppose that the estimate (7) hold for every f'e C(E*). Choose a positive
real number ¢ with

0<e<min{dy, DY},
where
oy= min |a,—aj.

I1<i<js¥
a4i#d

We denote by U,(a) the &/2-neighborhood of a point ae R, i.e.,
Ufa)={xeR" |x—a| <¢2}.

Define the function f, on R* by

2
—lx—a,.l; xeUj/a,), k=12, .,N.
fa®)=4°

1 otherwise.

Obviously,
f.e C(F)
and
fla,)=0 for k=1,2,.., N

Consequently,

Ru(f)=] 1A% dx
=1-] (1) s

s1-3 [ 0-fis

k=1 "Uelax)

—1—Ne' + Z f F—a, dx

1% — all <€/2

2N
=1—N£°’+——f 1Z] dF
& Vizi<e2

Ne* (31)

=1
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It is easy to see that w(f,;0)=1 for  >¢ Hence, we have

w(f; DY) =1. (32)
From (7), we have
Ry(fo)<co(f; DYP). (33)

Combining (31), (32), and (33) we get

N¢*

1 —
s+ 1

<c.

Passing to the limit as ¢ » 0+ in this inequality we obtain (8). This com-
pletes the proof of Theorem 2.
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